Tikhonov Regularization Parameter in Reproducing Kernel Hilbert Spaces with Respect to the Sensitivity of the Solution
نویسنده
چکیده
In our paper, we consider Tikhonov regularization in the reproducing Kernel Hilbert Spaces. In this space we derive upper and lower bound of the interval which contains the optimal value of Tikhonov regularization parameter with respect to the sensitivity of the solution without computing the singular values of the corresponding matrix. For the case of normalized kernel, we give an explicit formula for the optimal regularization parameter with respect to the sensitivity of the solution which needs only the knowledge of the minimal singular value of the corresponding matrix.
منابع مشابه
Solving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملTikhonov Regularization by a Reproducing Kernel Hilbert Space for the Cauchy Problem for an Elliptic Equation Tikhonov Regularization by a Reproducing Kernel Hilbert Space for the Cauchy Problem for an Elliptic Equation
We propose a discretized Tikhonov regularization for a Cauchy problem for an elliptic equation by a reproducing kernel Hilbert space. We prove the convergence of discretized regularized solutions to an exact solution. Our numerical results demonstrate that our method can stably reconstruct solutions to the Cauchy problems even in severe cases of geometric configurations.
متن کاملSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملFisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملWeight-decay regularization in Reproducing Kernel Hilbert Spaces by variable-basis schemes
The optimization problems associated with various regularization techniques for supervised learning from data (e.g., weight-decay and Tikhonov regularization) are described in the context of Reproducing Kernel Hilbert Spaces. Suboptimal solutions expressed by sparse kernel models with a given upper bound on the number of kernel computational units are investigated. Improvements of some estimate...
متن کامل